Leo scrive: Problema con un trapezio

Oggetto: PROBLEMA

Corpo del messaggio:
LA DIFFERENZA TRA IL LATO OBBLIQUO E L ‘ ALTEZZA DI  UN TRAPEZIO RETTANGOLO MISURA 2 CM E L ‘ALTEZZA è I SEI SETTIMI DEL LATO OBBLIQUO.
Considerando che l aria del trapezio misura 204 cm quadrati e che il rapporto tra le basi è pari a otto noni .Calcola il perimetro del trapezio .

Risultato:60 cm

 

Risposta dello staff

Dai dati avremo che:

l-h=2 \mbox { cm}

h= \frac 67 l

\frac B b =9

Dalle prime due equazioni calcoliamo i due lati:

l-\frac 67 l = 2 \mbox { cm}

\frac 17 l= 2 \mbox { cm}

l=14\mbox { cm}

h=12\mbox { cm}

Sappiamo che l’area del trapezio è 204 \mbox { cm}^2 e quindi:

\frac {(B+b) \cdot h}{2}=204

\frac {(B+b) \cdot 12}{2}=204

(B+b) \cdot 6=204

B+b=34 \mbox { cm}

Senza bisogno di calcolare la lunghezza delle singole basi calcoliamo il perimetro:

2p=B+b+l+h=(34+12+14)\mbox { cm}=60\mbox { cm}

 

(Questa pagina è stata visualizzata da 81 persone)

Simona scrive: Problemi

Oggetto: problemi

Corpo del messaggio:
1)il perimetro di un trapezio rettangolo è lungo 48 cm .L’altezza misura 6 cm e il lato obbliquo 8 cm .Calcola l ‘ area.
2) calcola l ‘area di un trapezio sapendo che la base maggiore misura 40,5 cm che la base minore equivale ai QUATTRO NONI DI QUELLA MAGGIORE E CHE L ‘altezza equivale ai 3 decimi della base minore.
3) L’area di un trapezio isoscele misura 100 cm quadrati ,la base minore è i tre settimi della base maggiore,il lato obbliquo  misura 12 cm calcola il perimetro usando le proporzioni , l’ altezza è di 10 cm .

 

Risposta dello staff

1)

Sapendo altezza e lato obliquo, ricaviamo la somma delle due basi:

B+b=2p-l-h=(48-6-8)\mbox { cm}=34\mbox { cm}

Sapendo la somma delle basi, calcoliamo l’area:

A= \frac {(B+b) \cdot h}{2}= \frac {34 \cdot 6}{2}\mbox { cm}^2=102 \mbox { cm}^2

 

2)

Calcoliamo subito la base minore:

b= \frac 49 B=\frac 49 40,5 \mbox { cm}=18\mbox { cm}

Calcoliamo l’altezza:

h=\frac {3}{10}b=\frac {3}{10}18 \mbox { cm}=5,4 \mbox { cm}

L’area sarà:

A=\frac {(b+B) \cdot h}{2}=\frac {(40,5+18) \cdot 5,4}{2}\mbox { cm}^2=157,95 \mbox { cm}^2

3)

Dai dati avremo che:

A=\frac {(B+b) \cdot h}{2}=100 \mbox { cm}^2

E, sapendo che l’altezza vale 10, allora:

B+b=20 \mbox { cm}

Calcoliamo il perimetro:

2p=B+b+2l=(20+24)\mbox { cm}=44\mbox { cm}

(Questa pagina è stata visualizzata da 73 persone)