Oggetto: Problemi sull’ellisse
Per ogni esercizio andremo a mettere a sistema le due equazioni:
![Rendered by QuickLaTeX.com \[\begin {cases} 4x^2+9y^2=36 \\ x-y-7=0\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-b58942542dbe89ac18f13efbf16415de_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 4(y+7)^2+9y^2=36 \\ x=y+7\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-35a71b530b5ee063161efcad580e992d_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 4y^2+56y+196+9y^2-36=0 \\ x=y+7\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-0be40326dd3c97b5e9b39b6e3cd4b2d2_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 13y^2+56y+160=0 \\ x=y+7\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-6a5ae3da003cb2993120c6497455d702_l3.png)
Calcoliamo il
:
![]()
Quindi, essendo il
, la retta sarà esterna all’ellisse.
![Rendered by QuickLaTeX.com \[\begin{cases} 16x^2+25y^2=100 \\ x-2=0 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-9b7336212c6ef0cf1719fde9ab6de0ce_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} 64+25y^2=100 \\ x=2 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-77f3289ecfb0cfd9571a4f092f30786e_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} 25y^2=36 \\ x=2 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-92af6a4feadcbe2327355e2d9d7500dc_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} y=\pm \frac 65 \\ x=2 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-cd727dcaad559f97be88b841e74399d9_l3.png)
Si nota subito che la retta sarà secante nei 2 punti trovati nel sistema.
![Rendered by QuickLaTeX.com \[\begin{cases} 81x^2+196y^2=441 \\ 2y+3=0 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-7adfc855ac42a7667cfa33f082273518_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} 81x^2+196y^2=441 \\ y=-\frac 32 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-ef50130c4ccfe3f86e271bc99315ae91_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} 81x^2+441=441 \\ y=-\frac 32 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-b6aa1bcc9364c38ac87c167df9408c36_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} 81x^2=0 \\ y=-\frac 32 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-5eee11cb79f4e97e2ca5437bd6b16ed1_l3.png)
![Rendered by QuickLaTeX.com \[\begin{cases} x=0 \\ y=-\frac 32 \end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-b0a90f98825113bb357801891ea87471_l3.png)
Avendo due punti coincidenti, la retta sarà tangente nel punto trovato.
![Rendered by QuickLaTeX.com \[\begin {cases} x^2+4y^2=40 \\ x+6y-20=0\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-344948f08e64e9338573f5510de66242_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} (20-6y)^2+4y^2=40 \\ x=20-6y\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-1ce31476e3f5bbb53aa9a018acc27ec9_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 400-240y+36y^2+4y^2=40 \\ x=20-6y\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-cc1fab17533ba785dff7575df77e227a_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 40y^2-240y+360=0 \\ x=20-6y\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-6f5f03b10d01ecd876e756acec23c7da_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} y^2-6y+9=0 \\ x=20-6y\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-0b681dd0fa06f4c3296d8948db76db09_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} (y-3)^=0 \\ x=20-6y\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-076d312a2679b8d5d55bdce6607d73b5_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} y=3 \\ x=20-18\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-25a76a7b54b0de5d4ab26913c6584af1_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} y=3 \\ x=2\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-200a23c3539f54f566790eeeaec206a7_l3.png)
Avendo due punti coincidenti, la retta sarà tangente nel punto trovato.
![Rendered by QuickLaTeX.com \[\begin {cases} 4x^2+21y^2=85 \\ 2x-9y-17=0\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-fe73b13e75933033231c6a98a219e3a1_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 4x^2+21y^2=85 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-64d354edbb9372cda668560e68400a72_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} (9y+17)^2+21y^2=85 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-c5a96752e0eb0633f9dea86bd1d5ff27_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 81y^2+306y+289+21y^2=85 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-8d95b1248553c71c00e381c2585876e7_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} 102y^2+306y+204=0 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-9821f9e7db2ccfc0d2221865d93425be_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} y^2+3y+2=0 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-c7779b28ed02d66fa193b1ccff4fb8c4_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} (y+2)(y+1)=0 \\ x=\frac {9y+17}{2}\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-4539148b0af0a0191896d5ce94dbe11c_l3.png)
![Rendered by QuickLaTeX.com \[\begin {cases} y_1=-2 \quad y_2=-1 \\ x_1=-\frac {1}{2} \quad x_2=4\end{cases}\]](https://www.matebook.it/wp-content/ql-cache/quicklatex.com-b9b7808a51afbb87c8440be0607c9313_l3.png)
La retta sarà secante e avrà i due punti trovati come punti di intersezione.
(Questa pagina è stata visualizzata da 261 persone)
