Esercizio 2 integrali per parti

\int log(1+x) \mathrm{d}x

f(x)=log(1+x) \rightarrow  f'(x)=\frac {1}{x+1}

g'(x)= 1 \rightarrow g(x)=  x

\int log(1+x) \mathrm{d}x= xlog(1+x)-\int x \frac {1}{x+1} \mathrm{d}x= xlog(1+x)-\int \frac {x+1-1}{x+1}\mathrm{d}x =xlog(1+x)-\int 1\mathrm{d}x +\int \frac {1}{x+1} \mathrm{d}x= xlog(1+x)-x+log(1+x)+c

 

 

Altri hanno visualizzato anche:

 

(Questa pagina è stata visualizzata da 229 persone)

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *